Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(1): 182-190, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38118433

RESUMO

We present a comprehensive theoretical study of valence-shell photoionization of the CO2 molecule by using the XCHEM methodology. This method makes use of a fully correlated molecular electronic continuum at a level comparable to that provided by state-of-the-art quantum chemistry packages in bound-state calculations. The calculated total and angularly resolved photoionization cross sections are presented and discussed, with particular emphasis on the series of autoionizing resonances that appear between the first and the fourth ionization thresholds. Ten series of Rydberg autoionizing states are identified, including some not previously reported in the literature, and their energy positions and widths are provided. This is relevant in the context of ongoing experimental and theoretical efforts aimed at observing in real-time (attosecond time scale) the autoionization dynamics in molecules.

2.
J Chem Phys ; 158(2): 024303, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641397

RESUMO

We present an experimental and theoretical energy- and angle-resolved investigation on the non-dissociative photoionization dynamics of near-resonant, one-color, two-photon, single valence ionization of neutral O2 molecules. Using 9.3 eV femtosecond pulses produced via high harmonic generation and a 3-D momentum imaging spectrometer, we detect the photoelectrons and O2 + cations produced from one-color, two-photon ionization in coincidence. The measured and calculated photoelectron angular distributions show agreement, which indicates that a superposition of two intermediate electronic states is dominantly involved and that wavepacket motion on those near-resonantly populated intermediate states does not play a significant role in the measured two-photon ionization dynamics. Here, we find greater utility in the diabatic representation compared to the adiabatic representation, where invoking a single valence-character diabat is sufficient to describe the underlying two-photon ionization mechanism.

3.
Phys Rev Lett ; 128(6): 063001, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213184

RESUMO

Capturing electronic dynamics in real time has been the ultimate goal of attosecond science since its beginning. While for atomic targets the existing measurement techniques have been thoroughly validated, in molecules there are open questions due to the inevitable copresence of moving nuclei, which are not always mere spectators of the phototriggered electron dynamics. Previous work has shown that not only can nuclear motion affect the way electrons move in a molecule, but it can also lead to contradictory interpretations depending on the chosen experimental approach. In this Letter we investigate how nuclear motion affects and eventually distorts the electronic dynamics measured by using two of the most popular attosecond techniques, reconstruction of attosecond beating by interference of two-photon transitions and attosecond streaking. Both methods are employed, in combination with ab initio theoretical calculations, to retrieve photoionization delays in the dissociative ionization of H_{2}, H_{2}→H^{+}+H+e^{-}, in the region of the Q_{1} series of autoionizing states, where nuclear motion plays a prominent role. We find that the experimental reconstruction of attosecond beating by interference of two-photon transitions results are very sensitive to bond softening around the Q_{1} threshold (27.8 eV), even at relatively low infrared (IR) intensity (I_{0}∼1.4×10^{11} W/cm^{2}), due to the long duration of the probe pulse that is inherent to this technique. Streaking, on the other hand, seems to be a better choice to isolate attosecond electron dynamics, since shorter pulses can be used, thus reducing the role of bond softening. This conclusion is supported by very good agreement between our streaking measurements and the results of accurate theoretical calculations. Additionally, the streaking technique offers the necessary energy resolution to accurately retrieve the fast-oscillating phase of the photoionization matrix elements, an essential requirement for extending this technique to even more complicated molecular targets.

4.
Faraday Discuss ; 228: 378-393, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566038

RESUMO

We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.

5.
Sci Adv ; 4(8): eaat3962, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151427

RESUMO

Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions. We show how vibrationally resolved photoelectron spectra of H2 allow one to reconstruct the associated subfemtosecond autoionization dynamics by using the ultrafast nuclear dynamics as an internal clock, thus forgoing ultrashort pulses. Our procedure should be general for autoionization dynamics in molecules containing light nuclei, which are ubiquitous in chemistry and biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...